

Open net pen salmon farming, infectious disease, and the ecology of coastal ecosystems

Martin Krkosek

Centre for Mathematical Biology, Department of Biological Sciences, University of Alberta

Understanding disease emergence

Daszak et al. (2000) Science, 287: 443-449.

Domestic animals: novel pathogen reservoirs

African buffalo, cattle, rinderpest (Hudson et al. 2002 *Ecology of Infectious Diseases*, Oxford) American buffalo, cattle, brucellosis (Dobson & Meagher 1996 *Ecology*) African wild dogs, domestic dogs, rabies (Kat et al. 1996 *Proc Roy Soc Lond B*) Lion, domestic dogs, canine distemper virus (Roelke-Parker et al 1996 *Nature*)

Salmon farms along wild salmon migration routes

1. Furunculosis – Bacterial Disease

- Infectious disease caused by Aeromonas salmonicida
- Disease spread in the Broughton Archipelago
 - 1991 Furunculosis outbreak in Brougthon Atlantic salmon precedes outbreak in hatchery resulting in 28% mortality
 - 1993 Outbreak of antibiotic resistant Furunculosis strain in Atlantic salmon precedes outbreak of same strain in hatchery

Salmon lice – Crustacean parasites

(Lepeophtheirus salmonis)

- Native parasite
- Common on farm salmon
- Common on wild adults
- Rare on wild juveniles< 5% prevalence

Farms associated with sea lice infestations

Net pen aquaculture can undermine transmission barriers

Opportunities for novel transmission pathways and novel dynamics

Understanding sea lice impacts

Do sea lice spread from farm to wild salmon?

How many juvenile salmon die from lice?

Do lice threaten wild salmon populations?

Fieldwork: Counting lice on juvenile salmon

Life- history stage	Time duration	Spatial displacement
Copepodids	T_c	$L_c = vT_c$
↓ Chalimi	T_h	$L_h = v(T_{c+}T_h)$
Motiles	T_{m}	$L_m = v(T_c + T_h + T_m)$

Infection Dynamics

Copepodids:
$$C(x) = \frac{\beta}{v} \int_{x-\lambda_c}^{x} L(u) du$$

Chalimi:
$$H(x) = \frac{s_c \beta}{v} \int_{x-\lambda_h}^{x-\lambda_c} L(u) du$$

Motiles:
$$M(x) = \frac{s_c s_h \beta}{v} \int_{x-\lambda_m}^{x-\lambda_h} L(u) du$$
,

Secondary infections

Motile lice can reproduce and disperse

Assume time scale of 2 parasite generations

$$L_2(x) = \varphi \int_{-\infty}^{\infty} M(y) k_L(x - y) dy$$

Fitting the transmission model

- Probabilistic model of infection events and parasite development
 - Infection by copepodids occurs as a Poisson process with spatially variable rate parameter
 - Infection by later developmental stages occurs as a Poisson-binomial process with variable rate parameter

$$P\{N_h = k\} = \sum_{n=k}^{\infty} \left[\binom{n}{k} (s_c)^k (1 - s_c)^{n-k} \left(\frac{\left[I_h(x)\right]^n}{n!} e^{-I_h(x)} \right) \right]$$
$$= \frac{1}{k!} \left[s_c I_h(x) \right]^k e^{-s_c I_h(x)},$$

where

$$I_h(x) = \beta \frac{1}{v} \int_{x-\lambda_h}^{x-\lambda_c} L(u) \, du$$
 Sample set gives the likelihood Individual fish Louse stage
$$L[\text{data} \mid \text{model}] = \prod_i \prod_j P\{y_{i,j,k} \mid \text{model}\}$$

Understanding sea lice impacts

- Do sea lice spread from farm to wild salmon?
 - YES, for 30 80 km
- How many juvenile salmon die from lice?

• Do lice threaten wild salmon populations?

Infection and Survival

Survival Analysis

- Q(t) probability a host survives to time t
- f(t) probability density function of mortality events

$$f(t) = \frac{d}{dt} \left[1 - Q(t) \right] \qquad Q(t) = \exp \left[-H_0 \int_0^t \Lambda(\tau) d\tau \right]$$

- The likelihood function $\prod_i f(\tau_i) \prod_j Q(\tau_j)$
- Lice transmission is spatial but host survival is temporal
- Use the chain rule to map time to space via migration velocity $\frac{dg}{dx} = \frac{dg}{dt} \cdot \frac{dt}{dx} = \frac{v^{-1} \cdot dg}{dt}$

$$\frac{dP_{1,1}}{dx} = \frac{p_c \beta}{v} L(x - \lambda_h) - \frac{1}{v} (n\mu_1 + \alpha_1) P_{1,1}$$

$$\frac{dP_{1,2}}{dx} = \frac{n\mu_1}{v} P_{1,1} - \frac{1}{v} (n\mu_1 + \alpha_1) P_{1,2}$$

$$\vdots$$

$$\frac{dP_{1,n}}{dx} = \frac{n\mu_1}{v} P_{1,n-1} - \frac{1}{v} (n\mu_1 + \alpha_1) P_{1,n}$$

$$\frac{dP_2}{dx} = \frac{n\mu_1}{v} P_{1,n} - \frac{\sigma}{v} P_2$$

Salmon survival

$$\frac{dN}{dx} = -\frac{1}{v} \left[\alpha_1 \sum_{i=1}^n P_{1,i}(x) + p \alpha_2 P_2(x) \right] N$$

Farm lice and wild salmon survival

Krkosek, Lewis, Morton, Frazer, Volpe, Proc Natl Adac Sci USA, 2006

Distance (km)

Understanding sea lice impacts

- Do sea lice spread from farm to wild salmon?
 - YES, for 30 80 km
- How many juvenile salmon die from lice?
 - 9-95% of juvenile salmon are killed by lice.
- Do lice threaten wild salmon populations?

Predicting population impacts

Krkosek, Gottesfeld, Proctor, Rolston, Carr-Harris, Lewis, Proc Roy Soc Lond B, 2007

$$\varphi = \exp\left[-\int_0^T \Phi(t)dt\right]$$

Non-compensatory mortality

$$\Phi_1(t) = \alpha \overline{P}(t)$$

Compensatory mortality

$$\Phi_{2}(t) = \begin{cases} 0 & \text{, if } \alpha \overline{P}(t) < \mu(t) \\ \left(\alpha \overline{P}(t) - \mu(t)\right), & \text{if } \alpha \overline{P}(t) > \mu(t) \end{cases}$$

The case of the Viner Chums

Understanding sea lice impacts

- Do sea lice spread from farm to wild salmon?
 - YES, for 30 80 km
- How many juvenile salmon die from lice?
 - 9-95% of juvenile salmon are killed by lice.
- Do lice threaten wild salmon populations?
 - Probably, but thorough analysis not yet complete

Conclusions

- 1. Myriad disease interactions between wild and farm fish
- 2. Disease dynamics and impacts are unpredictable and poorly understood
- 3. Scientific capacity is just beginning to detect, study, understand, and manage disease interactions.

The ocean is an open system

Funding Sources

Natural Science and Engineering Research Council (29%)
Pacific Salmon Forum (20%)
National Research Council - MITACS (19%)

National Geographic Society Research and Exploration Grant (4%)

University of Alberta Fellowships (5%)

David Suzuki Foundation (13%)
The Canadian Sablefish Association (4%)
BC Wilderness Tourism Association (3%),
Finest at Sea (2%)

MITACS
Funding Partners

Raincoast Conservation Society (1%)